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Finite-Element Analysis of Optical and
Microwave Waveguide Problems

B. M. AZIZUR RAHMAN, MEMBER, IEEE, AND J. BRIAN DAVIES, MEMBER, IEEE

Abstract — A vector H-field formulation is developed for electromagnetic
wave propagation for a wide range of guided-wave problems. It is capable
of solving microwave or optical waveguide problems with arbitrarily aniso-
tropic materials. We have introduced infinite elements to extend the region
of explicit field representation to infinity, to consider open-type waveguides
more accurately. Computed results are given for a variety of optical planar
guides, image lines, and waveguides containing skew anisotropic dielectric.

[. INTRODUCTION

S THE RANGE of guiding structures becomes more

intricate, so the need for computer analysis becomes
greater and more demanding. Some guides are so im-
portant as to justify specialized techniques adapted to their
needs, such as microstrip or the various optical fibers. But,
for its flexibility or versatility, the finite-element method
has become a powerful tool throughout engineering.

In this work, we are concerned with guiding structures
that are uniform in the direction of wave propagation, but
where the “guiding” arises from nonuniformity of material
in the transverse dimensions. Any guide cross section can
be divided into a patchwork of triangular elements, and the
appropriate field components represented by polynomials
over these elements. For open-type guides, beyond the
cross section represented by these orthodox triangular ele-
ments, we add “infinite elements”—rectangular strips
which give explicit field representations to infinity in all of
the necessary transverse directions. This is shown in Fig. 1
for a channel waveguide, where, because of the mirror
symmetry, the problem is reduced to a halif.

The finite-element variational formulation is made via a
full H vector field [1], where each field component H,, H ,
and H, is separately represented by a function continuous
over the whole transverse plane. This is particularly con-
venient for guides with permittivity discontinuities (e.g.,
image guide) where continuity of H-field components is
automatically satisfied.

Each element may have a different dielectric constant,
and the constant may be arbitrarily tensor (loss-free).
Applying stationariness of the variational form reduces the
problem to a standard eigenvalue matrix equation. For a
large-order matrix, most of the terms are zero, and so we
have used a truly sparse method [2] to solve the equation.
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Fig. 1. Node representation of a channel guide, with orthodox and
infinite elements.

II. VARIATIONAL FORMULATION FOR FINITE
ELEMENTS

There are different forms of variational formulation used
for finite-element methods. The scalar form of finite-
element method has been used for solving homogeneous
waveguide problems [3], [4]. This single scalar formulation
is inadequate for the inherently hybrid mode situation of
inhomogeneous or anisotropic problems. A finite-clement
formulation using an axial component of the fields (£, and
H,) has been used to solve many different types of guiding
structures problems [5]-[9]. This formulation cannot,
without destroying the canonical form of the eigenvalue
matrix, treat general anisotropic problems. For a wave-
guide with arbitrary dielectric distribution, the satisfying of
boundary conditions in this method can be quite difficult.
Another fundamental disadvantage of this method for
optical dielectric waveguide problems is that it considers
axial components of the fields, which are the least im-
portant components of the six-vector field. Berk [1] derived
vector variational formulations in the form of a Rayleigh
quotient for loss-free anisotropic waveguides and resona-
tors. Later, Morishita and Kumagai [10] derived similar
vector variational formulations. By contrast, a vector E
field was applied by English and Young [11]. This formula-
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tion can solve general anisotropic problems. They consid-
ered a vector E formulation as it involved more Dirichlet
(rather than Neumann) boundary conditions associated
with the fields. But for this formulation, the natural
boundary condition is that of a magnetic wall, which
cannot be left free for an electric wall boundary. As the
necessary boundary condition » X E = 0 must be imposed
on any conducting boundaries, it is an added difficulty to
implement that boundary condition on arbitrarily shaped
guide walls. Another disadvantage of this formulation is
that at the dielectric interface it needs special consideration
to ensure continuity of the tangential components of the
fields. Ohtaka et /. [12] used a variational form in terms of
the transverse component of H, compared with the full
three-vector H, this involves additional differentiation
which would be particularly disadvantageous with a finite
element approach. For many purposes, a vector H-field
formulation [13] has the advantage over all others. In this
formulation, the natural boundary condition is that of an
electric wall, so that for arbitrary conducting guide walls it
can be left free. In this formulation, the chosen field is
continuous at the dielectric interfaces, and so it is very
convenient for the finite-clement solution of dielectric
waveguide problems. In this formulation, we can also
consider general anisotropic problems, which are im-
portant for many active and passive integrated optics struc-
tures. '
This vector H-field formulation can be written as [1]

/(Curl H) e LCullHAV
2 =

[

1)
fH*-,z-HdV

where € and [i can be general anisotropic permittivity and
permeability of the loss-free medium, respectively. As the
natural boundary condition is that of an electric wall, we
need not force any boundary condition on conducting
guide walls. But for regularly shaped waveguides, and at
the symmetric walls (if applicable), we can enforce the
boundary conditions to reduce the problem size.

IIL

In the finite-element method [14], we first discretize the
entire problem domain into a finite number of triangular
subregions, called elements. In general, using many ele-
ments, we can approximate any continuum with a complex
boundary and with an arbitrary index distribution to such
a degree that an accurate analysis can be carried out. The
field functions (each of H,, H,, and H,) are defined by a
set of algebraic polynomials over each element in the
transverse plane, and longitudinal dependence exp(— jBz)
is assumed, for given B. By expressing these fields in terms
of “nodal values,” most or all of which occur on the
element boundaries, the resulting field components can be
continuous over the whole domain. The extremum func-
tional from (1) is then minimized with respect to the nodal
values of the field components. In this way, the minimi-
zation generates a set of linear algebraic eigenvalue equa-

FINITE-ELEMENT FORMULATION

tions. This eigenvalue equation can be written as
Ax—ABx=0 (2)

where A is a complex hermitian, B is a real symmetric
matrix, and A is proportional to w*. We can solve this
eigenvalue problem by one of various standard subroutines
to get different eigenvectors and eigenvalues.

In general, the matrices A and B are quite sparse and
have the same sparsity pattern. In the finite-element
method, we discretize the whole problem domain in many
smaller triangles, so that the continuous field problem is
reduced to finding fields at discrete nodes, where the
unknown field value is only coupled to the field values of
the neighboring nodes. When we divide the problem do-
main into many regularly shaped triangles, then the num-
ber of nonzero terms per row and /or per column in 4 or B
matrices will be a maximum of seven, irrespective of the
order of the matrices (for scalar field formulation with
first-order “shape functions,” viz. first-degree polynomials).
The nonzero coefficients can be even lower than seven per
row or column when we consider nodal points on, or
adjacent to, the boundary. Their coupling increases when
we use higher order shape functions or more field compo-
nents per nodal points, but always a very high proportion
of the A and B matrix elements are zero. As an example, if
we take a typical problem, using vector H field and a
first-order shape function, when the order of the matrices
is 397, then the percentage of nonzero terms is only 4.69
percent. We have exploited geometric symmetry and ap-
plied required boundary conditions at the time of assem-
bling the global matrices, so reducing the storage required,
as only the nonzero elements of the reduced matrices have
been stored. Using a “search-limiting algorithm,” we have
greatly reduced the searching time required to decide
whether a particular contribution to the global matrix has
been made earlier or not.

In contrast to the usual dense and band-matrix algo-
rithms [15], we have used a specially developed [16] “arbi-
trary sparse matrix” algorithm, Like the “subspace itera-
tion” and “Sturm count” algorithms described by Bathe
and Wilson [15], any band of adjacent eigenvalues can be
safely computed, together with their associated eigenvec-
tors. The advantage of the sparse matrix version is in
taking into account all of the many zeros of (2), and so
allowing a larger matrix order for given computer store. Its
storage requirement is roughly proportional to the order of
the matrices, rather than the square of the order of matrices,
as in the dense version. This subroutine can find one or
any number of eigenvalues (along with their eigenvectors)
close to a specified point in the spectrum.

One question of tradeoffs in finite elements is (for given
computer store and/or computer time) whether to use

. low-degree polynomials in many elements or high-degree

polynomials in few elements. The “correct” choice, for
most accurate results, depends on the application and on
the matrix algorithm used to solve (2). For any arbitrarily
shaped waveguide with arbitrary index distribution, our
experience is that better accuracy is achieved (for given
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computer time and storage) by using many small-order
triangles rather than fewer higher order triangles. The
lower order shape function can represent the problem
domain more accurately for a given order of matrix eigen-
value problem and gives higher sparsity of the matrices,
and so it is advantageous when (as in our case) a com-
pletely sparse algorithm is used to solve the matrix eigen-
value problems. For all our modeling of 1) optical stripe
guides with smooth refractive profiles, 2) image guides with
a rather irregularly shaped cross section, and 3) guides with
skew anisotropic permittivity (all illustrated later in this
paper), the first-degree polynomial has been used and has
proved to be effective.

INA

One property of the open-type waveguide is that finite
fields exist in the region outside the guide. Outside the
guide core, the field decays and the region of interest
extends to infinity. The modeling of the infinite transverse
extent of the waveguide presents a problem, and in ortho-
dox finite-element discretization [3]-[9] one does not ex-
tend the region of consideration up to infinity. This exten-
sion of the problem domain is particularly important for
the solutions close to cutoff, as (by definition of cutoff) the
fields decay slowly and the region of significant field value
can be arbitrarily large. To date, the customary approach is
the simple truncation, which sets artificial boundary walls
enclosing the guide [9]. In this case, care has to be taken so
that it is sufficiently remote for the influence of the posi-
tion of this artificial wall to be negligible, and at the same
time it is sufficiently close to limit the necessary number of
finite elements. One technique [8] involves shifting the
virtual boundary wall to satisfy a given criterion for the
maximum field strength at that wall.

Another approach is to use a recursion technique [17] to
generate the matrix representing the region outside the
main domain. It is possible to find the internal and exter-
nal solutions and to match them on an imaginary boundary,
some sort of integral solution being possible for the outside
region. McDonald and Wexler [18] have used the finite-
element method for a bounded region along with an in-
tegral equation for an unbounded region. In field matching
techniques, these “two region solutions” are quite common
[19].

Boundary elements have been used by Yeh e al. [20],
considering an exponential decay outside the guide core.
But in their method, because of nonconformity of the two
coordinate systems, the fields used were not continuous.
Bettes [21] has used infinite elements with a Cartesian
coordinate system, wusing an exponential decay and
Lagrange multipliers, for fluid flow problems.

An infinite element is a finite element that indeed ex-
tends to infinity, and shape functions for such an element
should be realistic to represent the fields and should be
square integrable over an infinite-element area, to satisfy
the radiation condition [22]. For an infinite element ex-
tending towards infinity in the x-direction, we can assume
exponential decay in x and conventional shape function

INFINITE ELEMENTS
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Fig. 2. Optimization of a decay parameter at three different frequencies.

dependence in the y-direction. It can be written as

N(x,y)=f(»)exp(—x/L) (3)
where L is a decay length. Similarly, we can have infinite
elements extending towards the y-direction by considering
exponential decay in y. Similarly, by assuming exponential
decay in both x and y, we can consider a rectangular or
quadrant element extending towards infinity in both x-
and y-directions. Integration of these shape functions or
their derivatives over the infinite elements are finite, and
can be simply carried out. Combining all of these elements
along with the conventional finite element, we can repre-
sent any open-type waveguide cross-sectional domain very
conveniently, with each field component being continuous
over the whole infinite domain.

Fig. 1 illustrates the use of infinite elements for the
analysis of a “channel” guide [23]. Orthodox triangular
elements are used in the central region. The infinite ele-
ments can be seen extending in all Cartesian directions. In
infinite elements we need to assume exponential decay
factors, which are unknown at the beginning. The best
value of decay parameter depends not only on the specific
problem, but also on the operating frequency, and can also
be different for different elements. Nevertheless, we would
contend that any reasonable parameter will be better than
considering a perfect reflector at the same boundary loca-
tion. Instead of assuming many decay parameters, we
restrict ourselves to a few, and subsequently optimize them.
Varying any one of them, we can find a stationary solution,
and the value of the parameter which makes the solution
stationary is taken as the optimized value. In Fig. 2, we
show the stationary nature of the solution for w? as ordinate
with variation of a particular decaying factor AL1 for three
different propagation constants (i.e., for three frequencies).
In Fig. 3, we show the variation of optimized AL1 with a
propagation constant. We observe that as the frequency
increases, the ALl is reduced, which corresponds to the
fact that fields are more confined inside the guide at the
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higher frequencies. Figs. 2 and 3 are for a rectangular
dielectric waveguide with dimension 6.0 gmX 3.0 pm hav-
inge,=1.1.

V. Spurious MODES

Like other workers [2], [6], [8], [9], and [13], we have
observed the presence of spurious solutions along with the
physical solutions. These spurious solutions apparently ex-
ist for all types of vector formulations. Their exact cause of
appearance still is not resolved. It could be due to various
factors such as enforcement of boundary conditions, the
positive definiteness of the operator, possibly due to the
nonzero divergence of the trial fields, or maybe because
the system is too flexible [24]. They can be identified from
the true solutions by different ways, one of which is by
inspecting corresponding eigenvectors. We have developed
a procedure which gives a very easy identification of the
probability of being a physical or spurious solution. The
logic behind the scheme is the fact that a physical eigenvec-
tor should obey div B = 0. Thus we calculate div H for each
eigenvector of interest and compare their values. We have
observed that, for all problems, a true solution has lower
divH than the spurious solutions. Comparing the divH
value of a particular mode with others helps in identifying
their validity. In all these cases, we have calculated divH
from the discrete nodal field values obtained after the
solution of the eigenvalue equation (2).

VI. RECTANGULAR DIELECTRIC WAVEGUIDES

A dielectric fiber with a refractive index higher than its
surrounding region is a simple form of an optical wave-
guide. These guides support various hybrid modes, which
can be grouped into two families H, and H) , and we

have used the mode designation as used by Marcatili [23].
We show propagation characteristics for H; and H3j
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Fig. 4. Propagation characteristics for a rectangular dielectric wave-
guide, finite element divisions 8 X 8 (128 triangles).
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modes, for guide dimension 6.0 pm X 3.0 pm and ¢, =1.1 in
Fig. 4, including a comparison with Yeh [20], Marcatili
[23], and Goell [25]. Fig. 5(a) and (b) shows the eigenvec-



24 1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 1, JANUARY 1984

525 22853 _0. 22913
L3 G
~ 3
40 um 5[ 20p
e
J 130
5.26
*=—=3,0 um ~—»{

€ 1/e depth=2.4Tym

B = B/ kS

522 .
10

A n rad/um

------ 6x9 division

7x10 division
A Wilkinson [ 26)

Fig. 6. Propagation characteristics of a titanium-diffused channel wave-
guide with a refractive index varying as a Gaussian function.

Hx
— .
0 1 2 3 &4 5 6 1 8 9 1
0. I3
-
SEe
‘\‘5?\\\:\:\::‘\
ot SIS
NN =~ \\\\\\\
SN
\\ \\\ \\ \\3\\ \\
n-nNg AN \\\ \\\l,, \\\ \\\ \\
10 b 0. .006 \ N T A \
0 \ \ N\
. \ \
n \e \\ \ ! ,,/
- s 1y
Dg \ } ” P
5. y \\ h /I’//:‘;/
< |15} b-bum —f : ’/,//:/
2 i
Ng = 2.2853 /://;/
AN =0006 s ,/4,/,
’/// R /,/
2.0¢ Dg= 2.47um L ////,/
/’/ Pid ,/’,’ ,//
1///// //// ///
//’2,/ // // // / 1 ’\.=0.3‘|96um
3 S
25k e e Sy, 0 2 A=035%um
" s/
LSS 3 = 04107 um
Y ;’ /’
/ // // // // 6// 4 A,:O.L791 um
// ’/ // // // // 5 )\.=0.571,7pm
3007 /7 ’ ’
A A 6 A, =07187um
Pl / / R
,'/// / // // x
/Il ’ / H 11 mode
) A
=1 ol . .
n/lrs Ti diffsed
t, /1 / / . X
T LiNbO3 guide
{ 7
wolli 7/

Fig. 7. Field distribution with depth y for titanium-diffused channel
waveguide at different wavelengths.

tors for the H} mode and the H;; mode, respectively, for a
guide dimension of 6.0 um X 6.0 pm withe, =1.1.

VIL

A channel, or embedded-strip, waveguide is a special
wavegnide of practical interest. The guide can be fabri-
cated with more relaxed requirements for the resolution
and edge roughness than for the rectangular dielectric
waveguide. The refractive index of the guiding section is
higher than that of the substrate, and this difference can be
achieved in just one step, or smoothly, such as a linear or
exponential variation. For comparison with the experi-
ment, we have solved a titanium-diffused channel wave-
guide, with a strip width of 3.0 pm and with a refractive
index following a Gaussian function of guide depth. At the
top of the guide, the refractive index is 2.2913 and that of
the substrate is 2.2853. At the depth of 2.47 pm, it attains
the value 2.2853+(2.2913 —2.2853)/e. Propagation char-
acteristics were computed for the Hyy, H3;, and H}, modes,
and the results are shown in Fig. 6. It shows good agree-
ment with the point obtained experimentally by Wilkinson
[26]. The field variation with guide depths for different
frequencies is shown in Fig. 7.

VIII.

The rib waveguide is another type of dielectric wave-
guide having considerable practical importance. This is a
special type of slab-coupled waveguide, where the loading
strip is made out of the same material as the slab. We have
analyzed a GaAs/GaAlAs rib waveguide, where the dielec-
tric constant of the rib and the slab is 11.8336 and that of
the substrate is 11.792356, as shown in Fig. 8. For all of
these rib waveguide problems, the dimension XDL of Fig.
8 is taken as 5.0 pm, and YDL + YARM is taken to be
constant and equal to 3.0 pm. Fig. 8 shows the propagation
characteristics for the HY mode for five different rib
heights, including a point from Austin [27]. Fig. 9 shows
propagation characteristics for four modes when the rib
height is 0.5 pm. Fig. 10 shows the field variation in the
symmetry plane normal to the surface, for different fre-
quencies. Fig. 11(a) and (b) shows eigenvectors for H}
modes for two different rib heights.

IX.

At millimeter and submillimeter wavelengths, the dielec-
tric image guide is a convenient form of waveguide. The
geometry of an image line, as shown in Fig. 12, consists of
a rectangular dielectric slab with relative permittivity e,,
backed by a perfectly conducting metal plate, and sur-
rounded by a semi-infinite medium of Iower dielectric
constant (usually air). We have solved a typical structure
(10.0 mm X 5.0 mm guide) with dielectric constant 1.05,
and its propagation characteristics are shown in Fig. 12. In
Fig. 13, we compare the solution of image lines having
different dielectric constants. Fig. 14(a) and (b) shows
eigenvectors for two modes of an image line. We have also
solved an image line with a deformed cross section due to
the fabrication process used. Its dielectric constant was
unknown, but its experimental dispersion curve was avail-
able [28]. We concluded that a dielectric constant value
about 7.5 is a reasonable approximation for the unknown
value. Associated dispersion curves are shown in Fig, 15,

CHANNEL WAVEGUIDE

RiB WAVEGUIDE

IMAGE LINES
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X. ANISOTROPIC WAVEGUIDE

A number of important applications of anisotropic media
have come to the forefront in the field of electromagnetic
waves. It is quite important for crystalline materials, such
as LINbO, or GaAs, as used for optical waveguides. Their
special tensor properties can be exploited to design phase
shifters, modulators, etc. [29]. To properly analyze these
structures, we need a method which is able to handle
structures with general anisotropy, and the H field FEM is
capable of doing so. Here we show the results of a metallic
rectangular waveguide loaded with iron-doped rutile. Its
crystal c-axis lies in the transverse plane at any arbitrary
angle @ with the larger side. The dielectric constants of this
material are 260.0 along the c-axis, and 130.0 along the
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Fig. 18. Variation of frequency, with propagation constant, for a TE,,
mode in an anisotropic waveguide, mesh division 6 X 6.

transverse axes. The fully loaded guide’s dimension is
taken to be 0.023 in X 0.011 in, as in [30}. Its variation of
the cutoff frequency for different modes with different 8’s
is given in Fig. 16. We plot the H, field contours for the
TE,, mode in Fig. 17. We show the accuracy of the FEM
method compared to an analytical method (which is possi-
ble only for § = 0° or 90°), and the variation of frequency
with the propagation constant in Fig. 18.

XL

We have solved a wide range of waveguide propagation
problems using a vector finite-element method. In the
finite-element method, one needs quite a large number of
elements or nodal points to achieve satisfactory accuracy of
the solution. Error in the solution decreases as the mesh
number increases, as the numerical model comes closer to
the continuous physical problem. This is shown in Fig. 19.
We can increase the accuracy by using a higher number of
elements, or by using higher order shape functions, or by
using extra-precision word length.

Mention was made in Section V of the appearance of
“spurious” modes in addition to the true physical modes.
We have identified the spurious solutions from the true
solutions by using the “divergence test” [2], where we
calculate |[div H| of each possible mode from the computed
nodal field values, and then integrate and compare them. A
true eigenvector invariably has a smaller value of |divH |
than a spurious one. Fig, 20 shows |divH | for a few modes
for an empty rectangular metallic waveguide.

For most of our problems, we have divided the structure
domain into 100 to 200 triangles, and corresponding
matrices’ orders were around 150 to 350. We store only the
nonzero elements of the highly sparse matrices, in linear
arrays, and solve by using the “subspace iteration method”
[2], using single-precision arithmetic. The time required by
our GEC minicomputer 4082 or 4090 is around 150 to 600

COMPUTATIONAL REMARKS
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Fig. 19. Variation of percentage errors for different modes in a rectan-

gular metallic waveguide with mesh division N X N.
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Fig. 20. Variation of divergence for a few eigenvectors in a rectangular
metallic waveguide.

i.e.u., which corresponds, roughly, to 1-5 cpu seconds on
the CDC 7600 (with the FTN compiler, opt = 2).

XII.

We present here a few of the results carried out using a
vector finite-element method in conjunction with infinite
elements [31]. It is found to be a powerful method to solve
a wide variety of dielectric waveguide problems with aniso-
tropic materials and unbounded regions. It is possible to
use this formulation for the design of directional couplers,
filters, phase shifters, modulators, etc. In this paper and
earlier work [31], we have ascertained the accuracy, gener-
ality, and diversity of this formulation.

CONCLUSIONS
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