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Finite-Element Analysis of O~ptical and
Microwave Waveguide Problems
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Abstract —A vector H-field formulation is developed for electromagnetic

wave propagation for a wide range of gnided-wave problems. It is capable

of solving microwave or optical wavegnide problems with arbitrarily aniso-

tropic materials. We have introduced infinite eleme~ to extend the region

of explicit field representation to infirdly, to consider open-type wavegoides

more accurately. Computed resnlts are given for a variety of opticaf planar

goides, image lines, and wavegnides containing skew anisotropic dielectic.

I. INTRODUCTION

A S THE RANGE of guiding structures becomes more

intricate, so the need for computer analysis becomes

greater and more demanding. Some guides are so im-

portant as to justify specialized techniques adapted to their

needs, such as microstrip or the various optical fibers. But,

for its flexibility or versatility, the finite-element method

has become a powerful tool throughout engineering.

In this work, we are concerned with guiding structures

that are uniform in the direction of wave propagation, but

where the “guiding” arises from nonuniformity of material

in the transverse dimensions. Any guide cross section can

be divided into a patchwork of triangular elements, and the

appropriate field components represented by polynomials

over these elements. For open-type guides, beyond the

cross section represented by these orthodox triangular ele-

ments, we add “infinite elements’’—rectangular strips

which give explicit field representations to infinity in all of

the necessary transverse directions. This is shown in Fig. 1

for a channel waveguide, where, because of the mirror

symmetry, the problem is reduced to a half.

The finite-element variational formulation is made via a

full H vector field [1], where each field component HX, H},

and Hz is separately represented by a function continuous

over the whole transverse plane. This is particularly con-

venient for guides with permittivity discontinuities (e.g.,

image guide) where continuity of H-field components is

automatically satisfied.
Each element may have a different dielectric constant,

and the constant may be arbitrarily tensor (loss-free).

Applying stationariness of the variational form reduces the

problem to a standard eigenvalue matrix equation. For a

large-order matrix, most of the terms are zero, and so we

have used a truly sparse method [2] to solve the equation.
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Fig. 1. Node representation of a channel guide, with orthodox and
infinite elements.

II. VARIATIONAL FORMULATION FOR FINITE

ELEMENTS

There are different forms of variational formulation used

for finite-element methods. The scalar form of finite-

element method has been used for solving homogeneous

waveguide problems [3], [4]. This single scalar formulation

is inadequate for the inherently hybrid mode situation of

inhomogeneous or anisotropic problems. A finite-element

formulation using an iiixid component of the fields (E, and

Hz) has been used to solve many different types of guiding

structures problems [5]–[9]. This formulation cannot,

without destroying the canonical form of the eigenvalue

matrix, treat general anisotropic problems. For a wave-

guide with arbitrary dielectric distribution, the satisfying of

boundary conditions in this method can be quite difficult.

Another fundamental disadvantage of this method for

optical dielectric waveguide problems is that it considers

axial components of the fields, which are the least im-

portant components of the six-vector field. Berk [1] derived

vector variational formulations in the form of a Rayleigh

quotient for loss-free anisotropic waveguides and resona-

tors. Later, Morishita and Kumagai [10] derived similar

vector variational formulations. By contrast, a vector E
field was applied by English and Young [11]. This formula-
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tion can solve general anisotropic problems. They consid-

ered a vector E formulation as it involved more Dirichlet

(rather than Neumann) boundary conditions associated

with the fields. But for this formulation, the natural

boundary condition is that of a magnetic wall, which

cannot be left free for an electric wall boundary. As the

necessary boundary condition n X E = O must be imposed

on any conducting boundaries, it is an added difficulty to

implement that boundary condition on arbitrarily shaped

guide walls. Another disadvantage of this formulation is

that at the dielectric interface it needs special consideration

to ensure continuity of the tangential components of the

fields. Ohtaka et al, [12] used a variational form in terms of

the transverse component of H, compared with the full

three-vector If, this involves additional differentiation

which would be particularly disadvantageous with a finite

element approach. For many purposes, a vector H-field

formulation [13] has the advantage over all others. In this

formulation, the natural boundary condition is that of an

electric wall, so that for arbitrary conducting guide walls it

can be left free. In this formulation, the chosen field is

continuous at the dielectric interfaces, and so it is very

convenient for the finite-element solution of dielectric

waveguide problems. In this formulation, we can also

consider general anisotropic problems, which are im-

portant for many active and passive integrated optics struc-

tures.

This vector H-field formulation can be written as [1]

J( Curl H)*. c-l”Curl HdV

6)2 =

J

(1)

H*.ji.HdV

where { and ~ can be general anisotropic permittivity and

permeability of the loss-free medium, respectively. As the

natural boundary condition is that of an electric wall, we

need not force any boundary condition on conducting

guide walls. But for regularly shaped waveguides, and at

the symmetric walls (if applicable), we can enforce the

boundary conditions to reduce the problem size.

III. FINITE-ELEMENT FORMULATION

In the finite-element method [14], we first discretize the

entire problem domain into a finite number of triangular

subregions, called elements. In general, using many ele-

ments, we can approximate any continuum with a complex

boundary and with an arbitrary index distribution to such

a degree that an accurate analysis can be carried out. The

field functions (each of HX, HY, and H,) are defined by a

set of algebraic polynomials over each element in the

transverse plane, and longitudinal dependence exp ( – j~z)

is assumed, for given & By expressing these fields in terms

of “nodal values,” most or all of which occur on the

element boundaries, the resulting field components can be

continuous over the whole domain. The extremum func-

tional from (1) is then minimized with respect to the nodal

values of the field components. In this way, the minimiz-

ation generates a set of linear algebraic eigenvalue equa-

tions. This eigenvalue equation can be written as

Ax– ABx=O (2)

where A is a complex hermitian, B is a real symmetric

matrix, and A is proportional to U2. We can solve this

eigenvalue problem by one of various standard subroutines

to get different eigenvectors and eigenvalues.

In general, the matrices A and B are quite sparse and

have the same sparsity pattern. In the finite-element

method, we discretize the whole problem domain in many

smaller triangles, so that the continuous field problem is

reduced to finding fields at discrete nodes, where the

unknown field value is only coupled to the field values of

the neighboring nodes. When we divide the problem do-

main into many regularly shaped triangles, then the num-

ber of nonzero terms per row and/or per column in A or B
matrices will be a maximum of seven, irrespective of the

order of the matrices (for scalar field formulation with

first-order” shape functions,” viz. first-degree polynomials).

The nonzero coefficients can be even lower than seven per

row or column when we consider “nodal points on, or

adj scent to, the boundary. Their coupling increases when

we use higher order shape functions or more field compo-

nents per nodal points, but always a very high proportion

of the A and B matrix elements are zero. As an example, if

we take a typical problem, using vector H field and a

first-order shape function, when the order of the matrices

is 397, then the percentage of nonzero terms is only 4.69

percent. We have exploited geometric symmetry and ap-

plied required boundary conditions at the time of assem-

bling the global matrices, so reducing the storage required,

as only the nonzero elements of the reduced matrices have

been stored. Using a “search-limiting algorithm,” we have

greatly reduced the searching time required to decide

whether a particular contribution to the global matrix has

been made earlier or not.

In contrast to the usual dense and band-matrix algo-

rithms [15], we have used a specially developed [16] “ arbi-

trary sparse matrix” algorithm. Like the “subspace itera-

tion” and “ Sturm count” algorithms described by Bathe

and Wilson [15], any band of adjacent eigenvalues can be

safely computed, together with their associated eigenvec-

tors. The advantage of the sparse matrix version is in

taking into account all of the many zeros of (2), and so

allowing a larger matrix order for given computer store. Its

storage requirement is roughly proportional to the order of

the matrices, rather than the square of the order of matrices,

as in the dense version. This subroutine can find one or

any number of eigenvalues (along with their eigenvectors)

close to a specified point in the spectrum.

One question of tradeoffs in finite elements is (for given

computer store and/or computer time) whether to use

low-degree polynomials in many elements or high-degree

polynomials in few elements. The “correct” choice, for

most accurate results, depends on the application and on

the matrix algorithm used to solve (2). For any arbitrarily

shaped waveguide with arbitrary index distribution, our

experience is that better accuracy is achieved (for given



22 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 1, JANUARY 1984

computer time and storage) by using many small-order

triangles rather than fewer higher order triangles, The

lower order shape function can represent the problem

domain more accurately for a given order of matrix eigen-

value problem and gives higher sparsity of the matrices,

and so it is advantageous when (as in our case) a com-

pletely sparse algorithm is used to solve the matrix eigen-

value problems. For all our modeling of 1) optical stripe

guides with smooth refractive profiles, 2) image guides with

a rather irregularly shaped cross section, and 3) guides with

skew anisotropic permittivity (all illustrated later in this

paper), the first-degree polynomial has been used and has

proved to be effective.

IV. INFINITE ELEMENTS

One property of the open-type waveguide is that finite

fields exist in the region outside the guide. Outside the

guide core, the field decays and the region of interest

extends to infinity. The modeling of the infinite transverse

extent of the waveguide presents a problem, and in ortho-

dox finite-element discretization [3]–[9] one does not ex-

tend the region of consideration up to infinity. This exten-

sion of the problem domain is particularly important for

the solutions close to cutoff, as (by definition of cutoff) the

fields decay slowly and the region of significant field value

can be arbitrarily large. To date, the customary approach is

the simple truncation, which sets artificial boundary walls

enclosing the guide [9]. In this case, care has to be taken so

that it is sufficiently remote for the influence of thle posi-

tion of this artificial wall to be negligible, and at the same

time it is sufficiently close to limit the necessary ”nurnber of

finite elements. One technique [8] involves shifting the

virtual boundary wall to satisfy a given criterion for the

maximum field strength at that wall.

Another approach is to use a recursion technique [17] to

generate the matrix representing the region outside the

main domain. It is possible to find the internal and exter-

nal solutions and to match them on an imaginary boundary,

some sort of integral solution being possible for the outside

region. McDonald and Wexler [18] have used the finite-

element method for a bounded region along with an in-

tegral equation for an unbounded region. In field makching

techniques, these” two region solutions” are quite common

[19].

Boundary elements have been used by Yeh et al. [20],
considering an exponential decay outside the guide core.
But in their method, because of nonconformity of the two

coordinate systems, the fields used were not continuous.

Bettes [21] has used infinite elements with a Cartesian

coordinate system, using an exponential decay and

Lagrange multipliers, for fluid flow problems.

An infinite element is a finite element that indeed ex-

tends to infinity, and shape functions for such an element

should be realistic to represent the fields and should be

square integrable over an infinite-element area, to satisfy

the radiation condition [22]. For an infinite eleme,nt ex-

tending towards infinity in the x-direction, we can assume

exponential decay in x and conventional shape function
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Fig. 2. Optimization of a decay parameter at three different frequencies

dependence in they-direction. It can be written as

~(x, y)=~(y)exp(–~/L) (3)

where L is a decay length. Similarly, we can have infinite

elements extending towards the y-direction by considering

exponential decay in y. Similarly, by assuming exponential

decay in both x andl y, we can consider a rectangular or

quadrant element extending towards infinity in both x-

and y-directions. Integration of these shape functions or

their derivatives over the infinite elements are finite, and

can be simply carriecl out. Combining all of these elements

along with the conventional finite element, we can repre-

sent any open-t ype waveguide cross-sectional domain very

conveniently, with each field component being continuous

over the whole infinite domain.

Fig. 1 illustrates the use of infinite elements for the

analysis of a “channel” guide [23]. Orthodox triangular

elements are used in the central region, The infinite ele-

ments can be seen extending in all Cartesian directions. In

infinite elements we need to assume exponential decay

factors, which are unknown at the beginning. The best

value of decay parameter depends not only on the specific

problem, but also on the operating frequency, and can also

be different for different elements. Nevertheless, we would

contend that any reasonable parameter will be better than

considering a perfect reflector at the same boundary loca-

tion. Instead of assuming many decay parameters, we

restrict ourselves to a few, and subsequently optimize them.

Varying any one of them, we can find a stationary solution,

and the value of the parameter which makes the solution

stationary is taken as the optimized value. In Fig. 2, we

show the stationary nakure of the solution for Uz as ordinate

with variation of a particular decaying factor AL1 for three

different propagation constants (i.e., for three frequencies).

In Fig. 3, we show the variation of optimized AL1 with a

propagation constant, We observe that as the frequency

increases, the ALIOpt is reduced, which corresponds to the

fact that fields are more confined inside the guide at the
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Fig. 3. Variation of an optimized decay parameter with propagation
constants.

higher frequencies. Figs. 2 and 3 are for a rectangular

dielectric waveguide with dimension 6.0 pm x 3.0 pm hav-

ing 6, =1.1.

V. SPURIOUS MODES

Like other workers [2], [6], [8], [9], and [13], we have

observed the presence of spurious solutions along with the

physical solutions. These spurious solutions apparently ex-

ist for all types of vector formulations. Their exact cause of

appearance still is not resolved. It could be due to various

factors such as enforcement of boundary conditions, the

positive definiteness of the operator, possibly due to the

nonzero divergence of the trial fields, or maybe because

the system is too flexible [24]. They can be identified from

the true solutions by different ways, one of which is by

inspecting corresponding eigenvectors. We have developed

a procedure which gives a very easy identification of the

probability of being a physical or spurious solution. The

logic behind the scheme is the fact that a physical eigenvec-

tor should obey divll = O. Thus we calculate divlf for each

eigenvector of interest and compare their values. We have

observed that, for all problems, a true solution has lower

div~ than the spurious solutions. Comparing the divlf

value of a particular mode with others helps in identifying

their validity. In all these cases, we have calculated divH

from the discrete nodal field values obtained after the

solution of the eigenvalue equation (2).

VI. RECTANGULAR DIELECTRIC WAVEGUIDES

A dielectric fiber with a refractive index higher than its

surrounding region is a simple form of an optical wave-

guide. These guides support various hybrid modes, which

can be grouped into two families H;. and Hi., and we

have used the mode designation as used by Marcatili [23].

We show propagation characteristics for H; and H;l

Fig. 4.

(a)

0.3

,~.

/

/ — FEM

/
Yeh[20]

0.2
j

-------- Marcat,li [ 23]

-----

0.1
“’(l

Goell [25]

,,/1

0.
1 2 3 4

B=+ (W,)ti

Propagation characteristics for a rectangular dielectric
guide, finite element divisions 8X 8 (128 triangles),

I
i#
t

---- _
----

I -\. s

T -
-+..-_>-..

I ‘\
yo \

——_ -.,

~ t -yo—___
: -.

L .40 ‘\

1

I--.. \sJ1

Ii-
+—-----’.0 . +

I
L-----”--------L______ -

-.. ---
--~ .. .-------

T‘---------:--- \----- .,’~,11) \
L

---
------- ;o.:’~;;$;’JJ“j~

/’ ) i I I

/’ I~----- 1’ I ;
//’

E
—------/“/’ ~ /’--- /’------z =----- ---- ,~-------------- -----

5====------------ - 1;:.1

E-
C.= 1.0--------- ==-.--_= --

-------- -. . -..

------- ---,
+0 - ;(A?;\-----.:: . -,----~~ \

d--.2ivlvl “i“t
1---- — -1

——

Fig. 5. Hx field contour in a rectangular dielectric waveguide. (a) Hfi
mode. (b) H~3 mode.

modes, for guide dimension 6.0 pm X 3.0 pm and c, = 1.1 in

Fig. 4, including a comparison with Yeh [20], Marcatili

[23], and Goell [25]. Fig. 5(a) and (b) shows the eigenvec-
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tors for the 11~1mode and the Hfi mode, respectively, for a

zuide dimension of 6.0 urn X 6.0 urn with C. =1.1.

VII. CHANNEL WAVEGUIDE

A channel, or embedded-strip, waveguide is a special

waveguide of practical interest. The guide can be fabri-

cated with more relaxed requirements for the resolution

and edge roughness than for the rectangular dielectric

waveguide. The refractive index of the guiding section is

higher than that of the substrate, and this difference can be

achieved in just one step, or smoothly, such as a linear or

exponential variaticm. For comparison with the experi-

ment, we have solved a titanium-diffused channel wave-

guide, with a strip width of 3.0 ~m and with a refractive

index following a Gaussian function of guide depth. At the

top of the guide, the refractive index is 2.2913 and that of

the substrate is 2.2853. At the depth of 2.47 pm, it attains

the value 2.2853 +(2.2913 – 2.2853)/e. Propagation char-

acteristics were computed for the Hfi, Hfl, and H~2 modes,

and the results are shown in Fig. 6. It shows good agree-

ment with the point obtained experimentally by Wilkinson

[26]. The field variation with guide depths for different

frequencies is shown in Fig. 7.

VIIII. RIB WAVEGUIDE

The rib waveguide is another type of dielectric wave-

guide having considerable practical importance. This is a

special type of slab-coupled waveguide, where the loading

strip is made out of the same material as the slab. We have

analyzed a GaAs/GaAIAs rib waveguide, where the dielec-

tric constant of the rib and the slab is 11.8336 and that of

the substrate is 11.792356, as shown in Fig. 8. For all of

these rib waveguide problems, the dimension XDL of Fig.

8 is taken as 5.0 pnn, and YDL + YARM is taken to be

constant and equal tc) 3.0 pm. Fig. 8 shows the propagation

characteristics for tlhe H~l mode for five different rib

heights, including a point from Austin [27]. Fig. 9 shows

propagation characteristics for four modes when the rib

height is 0.5 pm. Fig. 10 shows the field variation in the

symmetry plane normal to the surface, for different fre-

quencies, Fig. n(a) and (b) shows. eigenvectors for Hfl
modes for two different rib heights.

IX. IMAGE LINES

At millimeter and submillimeter wavelengths, the dielec-

tric image guide is a convenient form of waveguide. The

geometry of an image line, as shown in Fig. 12, consists of

a rectangular dielectric slab with relative permittivit y t ~,

backed by a perfectly conducting metal plate, and sur-

rounded by a semi-infinite medium of Iower dielectric

constant (usually air). We have solved a typical structure

(10.0 mm X 5.0 mm ,guide) with dielectric constant 1.05,

and its propagation characteristics are shown in Fig. 12. In

Fig. 13, we compare the solution of image lines having

different dielectric constants. Fig. 14(a) and (b) shows

eigenvectors for two modes of an image line. We have also

solved an image line with a deformed cross section due to

the fabrication process used. Its dielectric constant was

unknown, but its experimental dispersion curve was avail-

able [28]. We conclu~ded that a dielectric constant value

about 7.5 is a reasonable approximation for the unknown

value. Associated dispersion curves are shown in Fix 15., .
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X. ANISOTROPIC WAVEGtJIDE

A number of important applications of anisotropic media

have come to the forefront in the field of electromagnetic

waves. It is quite important for crystalline materials, such

as LiNb03 or GaAs, as used for optical waveguides. Their

special tensor properties can be exploited to design phase

shifters, modulators, etc. [29]. To properly analyze these

structures, we need a method which is able to handle

structures with general anisotropy, and the H field FEM is

capable of doing so. Here we show the results of a metallic

rectangular waveguide loaded with iron-doped rutile. Its

crystal c-axis lies in the transverse plane at any arbitrary

angle O with the larger side. The dielectric constants of this

material are 260.0 along the c-axis, and 130.0 along the
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Fig. 18. Variation of frequency, with propagation constant, fora TEIO
mode in an anisotropic waveguide, mesh division 6 x 6.

transverse axes. The fully loaded guide’s dimension is

taken to be 0.023 in x 0.011 in, as in [30]. Its variation of

the cutoff frequency for different modes with different 0‘s

is given in Fig. 16. We plot the HZ field contours for the

TEIO mode in Fig. 17. We show the accuracy of the FEM

method compared to an analytical method (which is possi-

ble only for 6 = 0° or 900), and the variation of frequency

with the propagation constant in Fig. 18.

XI. COMPUTATIONAL REMANCS

We have solved a wide range of waveguide propagation

problems using a vector finite-element method. In the

finite-element method, one needs quite a large number of

elements or nodal points to achieve satisfactory accuracy of

the solution. Error in the solution decreases as the mesh

number increases, as the numerical model comes closer to

the continuous physical problem. This is shown in Fig. 19.

We can increase the accuracy by using a higher number of

elements, or by using higher order shape functions, or by

using extra-precision word length.

Mention was made in Section V of the appearance of

“spurious” modes in addition to the true physical modes.

We have identified the spurious solutions from the true

solutions by using the “divergence test” [2], where we

calculate Idivl-1 I of each possible mode from the computed

nodal field values, and then integrate and compare them. A

true eigenvector invariably has a smaller value of Idivll I

than a spurious one. Fig. 20 shows Idivlf I for a few modes

for an empty rectangular metallic waveguide.

For most of our problems, we have divided the structure

domain into 100 to 200 triangles, and corresponding

matrices’ orders were around 150 to 350. We store only the

nonzero elements of the highly sparse matrices, in linear

arrays, and solve by using the” subspace iteration method”

[2], using single-precision arithmetic. The time required by

our GEC minicommter 4082 or 4090 is around 150 to 600
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Fig. 19. Variation of percentage errors for different modes in a rectan-
gular metallic waveguide with mesh division N x N.

Fig. 20. Variation of divergence for a few eigenvectors ‘in a rectangular
metallic waveguide.

i.e.u., which corresponds, roughly, to 1–5 cpu seconds on

the CDC 7600 (with the FTN compiler, opt= 2).

XII. CONCLUSIONS

We present here a few of the results carried out using a

vector finite-element method in conjunction with infinite

elements [31]. It is found to be a powerful method to solve

a wide variety of dielectric waveguide problems with aniso-

tropic materials and unbounded regions. It is possible to

use this formulation for the design of directional couplers,

filters, phase shifters, modulators, etc. In this paper and

earlier work [31], we have ascertained the accuracy, gener-

. alit y, and diversity of this formulation.
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